R07

Set No.1

IV B.Tech I Semester Supplementary Examinations, February/March, 2012 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- [8] 1. a) What is meant by binary image, color image, grey-scale image? b) Explain about various methods of image acquisition and explain about Quantization. [8]
- 2. Discuss the basics separable transforms. Also give example for it. [16]
- 3. a) Discuss Image sharpening with high pass masks b) Discuss Image sharpening with high boost filtering. [8+8]
- 4. Distinguish between spatial domain techniques and frequency domain techniques of Image enhancement. [16]
- 5. What is pseudo color image processing? Discuss various pseudo color techniques [16]
- 6. Discuss the following filters in detail
 - a) Arithmetic mean filter
 - b) Geometric mean filter
 - c) Harmonic mean filter
 - d) Contra harmonic mean filter [4+4+4+4]
- Discuss edge detection algorithms in detail [16]
- Explain the following
 - One-dimensional run-lengths coding
 - Two- dimensional run-lengths coding
 - Counter predictive coding c)
 - d) Loss less predictive coding [4+4+4+4]

1 of 1

R07

Set No.2

IV B.Tech I Semester Supplementary Examinations, February/March, 2012 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.		[8]
	b) What is Spatial and Gray level resolution?	[8]
2.	With mathematical expressions discuss Hotelling transform and explain how it is	
	useful in Image processing. How it is different from other transforms.	[16]
3.	a) What is meant by image enhancement by point processing? Discuss about	
	gray-level slicing.	[10]
	b) State and explain any two of Image sharpening filters	[6]
4.	Sketch perspective plot of a 2-D Ideal Low pass filter transfer function and filter	
	cross section and explain its usefulness in Image enhancement.	[16]
5.	Explain various color segmentation techniques in detail	[16]
6	Explain various image restore filters in detail.	[16]
0.	Explain various image restore inters in detail.	[10]
7.	a) Develop a general procedure for obtain the normal representation of a line	
	from its scope intercept equation $y = ax + b$	
	b) Find the normal representation of the line $y = -2x + 1$.	[16]
8.	Write about the following:	
	a) Interpixel Redundancy	[8]
	b) Psychovisual Redundancy.	[8]

1of 1

R07

Set No.3

IV B.Tech I Semester Supplementary Examinations, February/March, 2012 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

[8] 1. a) Explain nearest neighbor interpolation and bilinear interpolation b) Explain these following briefly. i) Image acquisition ii) Image compression [4+4]2. a) Explain walsh transform in detail [8] b) Explain about convolution and correlation properties of the 2 D FFT [8] 3. a) Prove that for continuous signal Histogram equalization results in flat [8] histogram. b) Explain how Histogram statistics helps in Image Enhancement. [8] 4. Give the expression for 2-D Butterworth Low pass filter transfer function and Sketch it. Explain its usefulness in Image enhancement. [16] 5. Describe the gray level transformations of color image. [16] 6. Explain about Adaptive median filter. [16] What is Sparse Matrix? How it is used by Hough Transform? Explain. [16] a) Draw and explain a general compression system model. [8] b) Draw the relevant diagram for source encoder and source decoder. [8]

R07

Set No.4

IV B.Tech I Semester Supplementary Examinations, February/March, 2012 **DIGITAL IMAGE PROCESSING**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	a) Write a brief notes on various components of digital image processing System?	[10]
	b) Explain the formation of a simple image?	[6]
2.	With mathematical expressions discuss Haar transform and explain how it is useful in Image processing.	[16]
3.	a) Explain the need for Image enhancement.	[8]
	b) Explain Gray level transformation functions for contrast enhancement.	[8]
4.	a) Explain any two low pass frequency domain filters.	[10]
	b) Explain how the butter worth filters can be converted to ideal or Gaussian LPF	[6]
5.	Derive the Laplacian coefficients for 3*3 mask? Explain how the Laplacian	
	operator improves the quality of image.	[16]
6.	Explain about Iterative Nonlinear Restoration Using the Lucy-Richardson	
	algorithm.	[16]
7.	Explain about Line detection using the Hough Transform.	[16]
8.	Explain the following	
	a) Coding redundancy	
X	b) Inter pixel redundancy	
	c) Psycho visual redundancy on the frame	[5+5+6]